In order to convert the high-performance research reactors from High Enriched Uranium (HEU) to Low Enriched Uranium (LEU) fuel, U-Mo alloy-based fuels in monolithic form have been proposed. These plate-type fuels consist of a high density and low enriched uranium (LEU) foil coated with a diffusion barrier and encapsulated with the aluminum cladding. The performance of the fuel plate has been evaluated by many studies through experimental tests and numerical analyses. When evaluating the performance of a fuel, it is expensive and time-consuming to consider a variation of several parameters, such as fuel plate geometry, material properties, and operating conditions. Fission profile is a critical component of the fuel performance analysis, causing swelling and creep deformation of the fuel plate. Therefore, it can directly affect the stress and strain distributions over the fuel plate. This study aims at investigating the effect of different fission profiles on the thermo-mechanical performance of the fuel plate by finite element analysis. To investigate the effect of fission profile on fuel performance, several different fission profiles were generated and analyzed. The fission profiles were generated based on actual use.

This content is only available via PDF.
You do not currently have access to this content.