Static, or motionless, mixers are widely used in applications that involve chemical reactions, heat transfer, blending of fluids, or a combination of these. Within those applications, mixing can affect various parameters such as heat or mass transfer rates, process operating time, cost, safety, and product quality. Therefore, it is crucial to assess the performance of static mixers. In general, their performance is evaluated based on their ability to carry out mixing while minimizing energy loss. To accomplish this, a novel mixing parameter, the M number, is proposed and evaluated. The M number is a unitless parameter that describes the effects of the mixer using entropy change and pressure drop. The parameter is compared to another method of mixing evaluation that relies on Covariance (CoV) change across the mixer. Computational Fluid Dynamics (CFD) is executed using both methods to evaluate two static mixers and compare the results of each method. Potential applications for the M number are discussed and its limitations are noted.

This content is only available via PDF.
You do not currently have access to this content.