Erosion wear caused by solid particles is recognized as one of the major concerns for centrifugal pumps. In this paper, a two-way coupled Eulerian-Lagrangian approach is employed to solve the solid-liquid flow in the centrifugal pump. The erosion model developed in the Erosion/Corrosion Research Center (E/CRC), combined with the Grant and Tabakoff particle-wall rebound model, are employed to predict particles behaviors and erosion wear. Three-dimensional transient calculation of the centrifugal pump for solid-liquid flow is carried out to research the performance and erosion wear of centrifugal pump. The influence of concentrations and diameters of solid particles are also investigated. The results show that the existence of solid particles decreases the static pressure and the velocity of liquid. The frequency of impingement and rebound will increase with the increase of the concentrations of solid particles. The middle of the hub and the trailing edge of blades pressure side are the most serious erosion regions.

This content is only available via PDF.
You do not currently have access to this content.