Due to the peculiar physical properties, supercritical carbon dioxide (sCO2) is considered as a promising working fluid in power generation cycles with high reliability, simple structure and great efficiency. Compared with the general thermal systems, the variable properties of sCO2 make the system models obtained by the traditional modelling method more complex. Besides, the pressure distribution in the system will affect the distribution of the fluid properties, the fluid properties influencing the heat transfer process will produce an impact on the temperature distribution which will in turn affect the pressure distribution through the mass flow characteristics of all components. This contribution introduces the entransy-based power flow method to analyze and optimize a recompression sCO2 power generation system under specific boundary conditions. About the heat exchanger, by subdividing the heat transfer area into several segment, the fluid properties in each segment are considered constant. Combining the entransy dissipation thermal resistance of each segment and the energy conservation of each fluid in each segment offers the governing equations for the whole heat transfer process without any intermediate segment temperatures, based on which the power flow diagram of the overall heat transfer process is constructed. Meanwhile, the pressure drops are constrained by the mass flow characteristics of each component, and the inlet and outlet temperatures of compressors and turbines are constrained by the isentropic process constraints and the isentropic efficiencies. Combining the governing equations for the heat exchangers and the constraints for turbine and the compressors, the whole system is modeled by sequential modular method. Based on this newly developed model, applying the genetic algorithm offers the maximum thermal efficiency of the system and the corresponding optimal operating variables, such as the mass flow rate of the working fluid in the cycle, the heat capacity rate of the cold source and the recompression mass fraction under the given heat source. Furthermore, the optimization of the system under different boundary conditions is conducted to study its influence on the optimal mass flow rate of the working fluid, the heat capacity of the cold source and the maximum system thermal efficiency. The results proposes some useful design suggestions to get better performance of the recompression supercritical carbon dioxide power generation system.

This content is only available via PDF.
You do not currently have access to this content.