Growing concerns about global warming and depletion of fossil fuel have resulted in exploring alternative energy solutions such as renewable energy resources. Among those, marine and hydrokinetic and in particular wave energy have drawing more interest. Ocean waves are predictable, less variable, and offer higher energy density values. As per National Oceanic and Atmospheric Administration (NOAA), North Carolina ranks 6th with total 484 km coastline length. In this work, six-year National Data Buoy Center (NDBC) wave data from five stations along the North Carolina shore including Wilmington Harbor, Mansonboro Inlet, Oregon Inlet, and Duck FRF (17 and 26 m) are collected. The wave parameters such as wave height and period are analyzed and the potential wave power density values are calculated. The power production from the resource is estimated using wave energy converters. Storing excess energy in the form of hydrogen can be used for a variety of applications. Hence, the cost-performance analysis using the cost per unit method is conducted to obtain the maximum and average hydrogen production from the studied site. The results will be useful to a wide range of development activities in both academia and industry.

This content is only available via PDF.
You do not currently have access to this content.