Nitrogen oxide (NOx) emitted from boilers in coal-fired power plant may be reduced by 90 percent through the application of the selective catalytic reduction (SCR). However, the escaped ammonia from the SCR systems could react with sulfur oxides (SOx) in the flue gas to form ammonium bisulfate (ABS) in exhaust systems. The blockage and corrosion caused by ABS seriously impact the rotary air preheater (RAPH), which would not only increase operating cost on ash-blowing and cleaning but also lead to unplanned outage. To solve the problem, in this paper a novel preheater system is proposed. A single preheater is split into two sub-preheaters, between which the main flue gas flow is mixed with the recirculated flue gas from outlet of the lower-temperature preheater. After the mixing point, a reaction chamber and a precipitator are installed. A numerical finite difference method (FDM) is employed to model the RAPH and obtain the accurate temperature distribution of fluid and heat transfer elements. The initial formation temperatures of (NH4)2SO4 and ABS are 200 °C and 170 °C, respectively, according to the flue gas composition in this work. By calculation, this split design of the RAPH is believed to be effective in reducing deposition of ABS.

This content is only available via PDF.
You do not currently have access to this content.