Urban solid waste generation has drastically grown around the world, requiring creative, ecologically correct and sustainable solutions to be developed. This work considers a problem of thermodynamic optimization of extracting the most energy from a stream of hot exhaust produced by urban solid waste incineration, considering a stoichiometric combustion model, when the contact heat transfer area is fixed. For that, a mathematical model is introduced to evaluate the rate of heat generation due to the waste incineration process, and the exergetic (power) rate captured by a heat recovery steam generator (heat exchanger). The numerical results show that when the (cold) receiving stream boils in the counterflow heat exchanger; the thermodynamic optimization consists of locating the optimal capacity rate of the cold current. At the optimum, the cold side of the heat transfer surface is divided into three sections: preheating of liquid, boiling and superheating of steam. Experimental results are in good qualitative and quantitative agreement with the numerically calculated mathematical model results. Microalgae cultivated in large-scale vertical tubular compact photobiorreactors are investigated to treat the emissions produced by the incineration, and to increase the efficiency of the global system via cogeneration of co-products with high aggregated commercial value.

This content is only available via PDF.
You do not currently have access to this content.