As one kind of serious environmental problems, flow-induced noise in centrifugal pumps pollutes the working circumstance and deteriorates the performance of pumps, meanwhile, it always changes drastically under various working conditions. Consequently, it is extremely significant to predict flow-induced noise of centrifugal pumps under various working conditions with a practical mathematical model. In this paper, a three-layer back propagation (BP) neural network model is established and the number of input, hidden and output layer node is set as 3, 6 and 1, respectively. To be specific, the flow rate, rotational speed and medium temperature are chosen as input layer, and the corresponding flow-induced noise evaluated by average of total sound pressure level (A_TSPL) as output layer. Furthermore, the tansig function is used to act as transfer function between the input layer and hidden layer, and the purelin function is used between hidden layer and output layer. The trainlm function based on Levenberg-Marquardt algorithm is selected as the training function. By using a large number of sample data, the training of the network model and prediction research are accomplished. The results indicate that good correlation is established among the sample data, and the predictive values show great consistence with simulation ones, of which the average relative error of A_TSPL in process of verification is 0.52%. The precision of the model can satisfy the requirement of relevant research and engineering application.

This content is only available via PDF.
You do not currently have access to this content.