This paper reports the results of a study to determine a ternary blend of oxygenated additives for reduction in smoke emissions in diesel engines. Initial studies on binary blends established twenty percent (by volume) n-butanol-diesel blend (B20) as the base fuel. Subsequently observations were taken with Nitromethane (NM)-n-butanol-diesel blends. It was observed that binary blends are not able to reduce smoke and other emissions beyond the optimum blending ratio (B20). Also, Cetane Number of binary blends was found to be lowered due to poor Cetane Number of n-butanol. It is therefore necessary to add another additive which helps in reducing smoke substantially and improve Cetane Number of blend without affecting the other parameters. The study found that blending of one percent of NM by volume gives best results for smoke reduction. The overall effect of this ternary blend is to reduce the smoke and NOx up to 69.76% and 5.4% respectively. It is concluded that NM-n-butanol-diesel blend would be a potential fuel for smoke reduction in diesel engines.
- Power Division
- Advanced Energy Systems Division
- Solar Energy Division
- Nuclear Engineering Division
Experimental Study of Performance and Exhaust Emissions of a VCR Diesel Engine Fuelled With Oxygenated Additives
Nayyar, A, Sharma, D, Soni, SL, & Mathur, A. "Experimental Study of Performance and Exhaust Emissions of a VCR Diesel Engine Fuelled With Oxygenated Additives." Proceedings of the ASME 2017 Power Conference Joint With ICOPE-17 collocated with the ASME 2017 11th International Conference on Energy Sustainability, the ASME 2017 15th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2017 Nuclear Forum. Volume 1: Boilers and Heat Recovery Steam Generator; Combustion Turbines; Energy Water Sustainability; Fuels, Combustion and Material Handling; Heat Exchangers, Condensers, Cooling Systems, and Balance-of-Plant. Charlotte, North Carolina, USA. June 26–30, 2017. V001T04A021. ASME. https://doi.org/10.1115/POWER-ICOPE2017-3236
Download citation file: