Two typical pulverized Zhundong coal with different calcium oxide contents in ash were selected to use in this work. The liquid nitrogen was used to cool ash rapidly at different temperatures, in order to avoid changes in mineral condition. The ash melting behavior and mineral transition mechanism, especially calcium-bearing minerals was studied by ash melting point test platform, XRD, XRF, SEM and EDS. The results showed that the different states of calcium are the dominant reasons for different sintering behaviors of coal ash. The calcium-bearing minerals in ash, such as calcium oxide (CaO), calcium silicate (CaSiO3), gehlenite (2CaO·Al2O3·SiO2), and anorthite (CaO·Al2O3·2SiO2), etc., are the most important factors influencing the initial sintering behavior of coal ash in the temperature range from 1373K to 1473K under oxidizing atmosphere during coal combustion. That is the reason why ash starts to melt at relatively high temperature during ash melting behavior in laboratory, but has severe slagging and contamination characteristic at low temperature during coal combustion in boilers. The research achievments have important guiding significance for the design of partially or completely burning Zhundong coal boiler as well as its long-term safe and efficient operation. (CSPE)

This content is only available via PDF.
You do not currently have access to this content.