The current work presents the results of an experimental study that is conducted to investigate the effect of nanoparticles added to biodiesel-diesel fuel mixture. Nano-biodiesel-diesel mixture fuels were prepared by adding of multi-walled carbon nanotubes (MWCNTs). These nanoparticles were blended with biodiesel-diesel fuel in varying mass fractions using an ultrasonic stabilization. A diesel engine test rig was used to examine the effect of nanoparticles on engine performance and emission characteristics with a constant speed of 2500 rpm and different engine loads. The engine test results indicated that the biodiesel-diesel fuel blend slightly decreased the engine performance and increased its emission characteristics at all tested engine operating conditions. The use of nanoparticles was found to improve all engine performance parameters. Specifically, the maximum emission reduction was obtained at a dose level of 20 mg/l, where considerable emission reduction was observed; NOx by 14 %, CO by 30 %, and UHC by 34 %. Also, the best of both engine combustion characteristics and performance were reached at a dose level of 40–50 mg/l. Where the reduction in the brake specific fuel consumption was by 16 %, the increase in both the cylinder peak pressure Pmax, and maximum gross heat release rate dQg/dθmax. were 4 % and 1%, respectively. Finally, the recommended dose level to achieve a significant enhancement in all engine performance is 40 mg/l.
- Power Division
- Advanced Energy Systems Division
- Solar Energy Division
- Nuclear Engineering Division
Investigation of the Performance of a Diesel Engine Fueled by Biodiesel-Diesel Fuel Mixture With Addition of Nanoparticles Available to Purchase
EL-Seesy, AI, Abdel-Rahman, AK, Hassan, H, Ookawara, S, & Hawi, M. "Investigation of the Performance of a Diesel Engine Fueled by Biodiesel-Diesel Fuel Mixture With Addition of Nanoparticles." Proceedings of the ASME 2017 Power Conference Joint With ICOPE-17 collocated with the ASME 2017 11th International Conference on Energy Sustainability, the ASME 2017 15th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2017 Nuclear Forum. Volume 1: Boilers and Heat Recovery Steam Generator; Combustion Turbines; Energy Water Sustainability; Fuels, Combustion and Material Handling; Heat Exchangers, Condensers, Cooling Systems, and Balance-of-Plant. Charlotte, North Carolina, USA. June 26–30, 2017. V001T04A005. ASME. https://doi.org/10.1115/POWER-ICOPE2017-3055
Download citation file: