Turbulent combustion flows in the partially premixed combustion field of a dry low-emission gas-turbine combustor were investigated numerically by large-eddy simulation with a 2-scalar flamelet model. Partially premixed combustion was modelled with 2-scalar coupling based on the conservative function of the mixture fraction and the level set function of the premixed flame surface; the governing equations were then used to calculate the gas temperature in the combustion field with flamelet data. A new combustion model was introduced by defining a nondimensional equilibrium temperature to permit the calculation of adiabatic flame temperatures in the combustion field. Furthermore, a conventional G-equation was modified to include spatial gradient terms for the adiabatic flame temperature to facilitate smooth propagation of a burnt-state region in a predominantly diffusion flame. The effect of flame curvature was adjusted by means of an arbitrary parameter in the equation. The simulation results were compared with those from an experiment and a conventional model. Qualitative comparisons of the instantaneous flame properties showed a dramatic improvement in the new combustion model. Moreover, the experimental outlet temperature agreed well with that predicted by the new model. The model can therefore reproduce the propagation of a predominantly diffusion flame in partially premixed combustion.
- Power Division
- Advanced Energy Systems Division
- Solar Energy Division
- Nuclear Engineering Division
Large-Eddy Simulation With a New Flamelet Model for Partially Premixed Combustion in a Gas-Turbine Combustor Available to Purchase
Tanaka, K, Sato, T, Oshima, N, Kim, J, Takahashi, Y, & Iwai, Y. "Large-Eddy Simulation With a New Flamelet Model for Partially Premixed Combustion in a Gas-Turbine Combustor." Proceedings of the ASME 2017 Power Conference Joint With ICOPE-17 collocated with the ASME 2017 11th International Conference on Energy Sustainability, the ASME 2017 15th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2017 Nuclear Forum. Volume 1: Boilers and Heat Recovery Steam Generator; Combustion Turbines; Energy Water Sustainability; Fuels, Combustion and Material Handling; Heat Exchangers, Condensers, Cooling Systems, and Balance-of-Plant. Charlotte, North Carolina, USA. June 26–30, 2017. V001T02A001. ASME. https://doi.org/10.1115/POWER-ICOPE2017-3141
Download citation file: