Gas turbine power plants fueled by natural gas are common due to their quick start-up operation and low emissions compared with steam power plants that are directly fired. However, the efficiency of basic gas turbine power plant is considered low. Any improvement in the efficiency would result in fuel savings as well as reduction in CO2 emissions. One way to improve the efficiency is to utilize exhaust gas waste heat. Two waste heat utilization options were considered. The first option was to run a steam power plant (i.e. combined cycle power plant) while the other option was to use a regenerator which reduces the size of the combustion chamber. The regenerator utilizes the waste heat to preheat the compressed air before the combustion chamber. In addition, the efficiency can be improved with compressor intercooling and turbine reheating. In this paper, four gas turbine power plant configurations were investigated and optimized to find the maximum possible efficiency for each configuration. The configurations are (1) basic gas turbine, (2) combined cycle, (3) advanced combined cycle and (4) gas turbine with regenerator, intercooler and reheater. The power plants were modeled in EES software and the basic model was validated against vendor’s data (GE E-class gas turbine Model 7E) with good agreement. Maximum discrepancy was only 3%. The optimization was carried out using conjugate directions method and improvements in the baseline design were as high as 25%. The paper presents the modeling work, baseline designs, optimization and analysis of the optimization results using T-s diagrams. The efficiency of the optimized configurations varied from 49% up 65%.
Skip Nav Destination
ASME 2016 Power Conference collocated with the ASME 2016 10th International Conference on Energy Sustainability and the ASME 2016 14th International Conference on Fuel Cell Science, Engineering and Technology
June 26–30, 2016
Charlotte, North Carolina, USA
Conference Sponsors:
- Power Division
- Advanced Energy Systems Division
- Solar Energy Division
- Nuclear Engineering Division
ISBN:
978-0-7918-5021-3
PROCEEDINGS PAPER
Efficiency Optimization of Four Gas Turbine Power Plant Configurations
Sultan Almodarra,
Sultan Almodarra
King Saud University, Riyadh, Saudi Arabia
Search for other works by this author on:
Abdullah Alabdulkarem
Abdullah Alabdulkarem
King Saud University, Riyadh, Saudi Arabia
Search for other works by this author on:
Sultan Almodarra
King Saud University, Riyadh, Saudi Arabia
Abdullah Alabdulkarem
King Saud University, Riyadh, Saudi Arabia
Paper No:
POWER2016-59157, V001T02A002; 6 pages
Published Online:
November 1, 2016
Citation
Almodarra, S, & Alabdulkarem, A. "Efficiency Optimization of Four Gas Turbine Power Plant Configurations." Proceedings of the ASME 2016 Power Conference collocated with the ASME 2016 10th International Conference on Energy Sustainability and the ASME 2016 14th International Conference on Fuel Cell Science, Engineering and Technology. ASME 2016 Power Conference. Charlotte, North Carolina, USA. June 26–30, 2016. V001T02A002. ASME. https://doi.org/10.1115/POWER2016-59157
Download citation file:
21
Views
Related Proceedings Papers
Related Articles
Analysis of Gas-Steam Combined Cycles With Natural Gas Reforming and CO 2 Capture
J. Eng. Gas Turbines Power (July,2005)
Simulation of Producer Gas Fired Power Plants with Inlet Fog Cooling and Steam Injection
J. Eng. Gas Turbines Power (July,2007)
Comparative Study of Two Low C O 2 Emission Power Generation System Options With Natural Gas Reforming
J. Eng. Gas Turbines Power (September,2008)
Related Chapters
Combined Cycle Power Plant
Energy and Power Generation Handbook: Established and Emerging Technologies
Introduction
Consensus on Operating Practices for Control of Water and Steam Chemistry in Combined Cycle and Cogeneration
Threshold Functions
Closed-Cycle Gas Turbines: Operating Experience and Future Potential