Waste heat recovery has become very important in the last decennia. The Organic Rankine Cycle is the most popular technology to transform waste heat into mechanical work or electricity. While large and medium scale installations are widely available on the market for various temperature and power levels, small scale ORCs are still in a pre-commercial phase because of a relatively high specific price.

To make small scale ORCs more attractive for potential customers, the price has to be drastically reduced which means reducing the manufacturing and assembling operations, the number of parts in assemblies and unification of these assemblies. In addition, the performance has to be increased by using advanced cycle architectures and the right fluids. Not only the right choice of the working fluid is important but also the expander built-in volume ratio (BVR) has to be optimal or improved. Neither a fixed volume ratio expander, nor a turbine can provide an optimal expansion of a working fluid in a wide range of operating conditions [1]. In automotive applications, for instance, a strongly fluctuating heat input will be introduced to an ORC unit.

To estimate losses caused by non-optimal operation, a model of a volumetric expander has been developed and verified using the result of extensive test campaigns with a screw expander. The volume ratio of the expander mentioned cannot be physically changed, so under widely changing pressure ratio, caused by varying inlet waste heat and ambient temperatures, it operates mostly far from its design point. The model gives a possibility to vary the BVR in order to compare a fixed-volume ratio expander with a variable one. Benefits from replacement of this expander by an adaptive one are studied. Only steady states are taken into account since there is no dynamic model of this expander developed yet. As a consequence of the results obtained, a concept of a variable volume ratio expander is proposed.

This content is only available via PDF.
You do not currently have access to this content.