Gainesville Regional Utilities (GRU) is a fully vertically-integrated utility with electric power generation, transmission, and distribution system owned by the City of Gainesville, FL. We have two primary generating plant sites: Deerhaven with two conventional coal-fired steam units (DH1 and DH2) and John R. Kelly (JCC1) combined-cycle Unit 1. Kelly Station (the focus of this study) is located in southeast Gainesville near the downtown business district. It has one - 120 MW combined-cycle unit (JCC1) in 1 × 1 configuration, consisting of: one GE Frame 7E combustion turbine (dual fuel), one Applied Thermal Systems two pressure HRSG, one 50-year old Westinghouse steam turbine unit with cooling tower, fuel storage, pumping equipment, transmission, and distribution equipment.

In 2013, GRU with a seasonal peak load of approximately 500 MWs was to start receiving the output of a new 100 MW bio-fuel plant under a purchase power agreement. It was apparent that the operation of the GRU units would drastically change. It was predicted by GRU that DH2 a 255 MW coal unit would move to a cycling duty unit and the Kelly combined-cycle unit would be relegated to “peaking” operation. To better understand and predict future operational impacts, GRU contracted with Intertek AIM (APTECH) to conduct a Cost of Cycling study.

This paper is our presentation of the results of the study and the changes that were indicated by the cycling analysis to manage the GRU system at the lowest cost and to incorporate the new modes of cycling operation. The expected modes of operation based on the results of the study were reversed to use the lowest cost unit for frequent cycling of JCC1 and changed the previously base loaded coal unit DH2 into a seasonal unit with long seasonal shut downs. This paper further shows the actions implemented by GRU at Kelly station to improve the cycling response and reduce the damage impact of each cycle by managing the startup ramp rates of the limiting equipment. The plant had limited budget for capital improvements and focused principally on managing the cost by modifying the startup procedures using real time operating data.

Our conclusion was that by following the report recommendations, a new “Start Model” produced repeatable and acceptable results that minimized possible damage to the unit while meeting the need to use the renewable energy and support the customer by providing power at the lowest cost. The paper will demonstrate the improvement areas, the actual changes, and the results of those changes to the cycling data and the savings due to reduced damage.

This content is only available via PDF.
You do not currently have access to this content.