To reveal the inner mechanism of gas explosion, the entire scenario of premixed flame front evolution within an accidental fire is prescribed. Specifically, “finger” flame shape, which is one of the key stages of flame evolution, is scrutinized with the situation of a methane-air explosion. A transition from a globally-spherical front to a finger-shaped one occurs when a flame starts approaching the passage walls. While this acceleration is extremely strong, it stops as soon as the flame touches the passage wall. This mechanism is Reynolds-independent; being equally relevant to micro-channels and giant tunnels. The flame speed increases by an order of magnitude during this stage. To implement dusty environments, Seshadri formulation for the planar flame [Combustion and Flame 89 (1992) 333] is employed with a non-uniform distribution of inert dust gradients, specifically, linear, parabolic and hyperbolic spatial dust distribution gradients are incorporated into the “finger” flame shape. This study systematically investigates how the noncombustible dust distributions affect fire evolution, the flame shape, and propagation velocity.

This content is only available via PDF.
You do not currently have access to this content.