In this paper, a new method of generating power by “wind-induced vibration” (WIV). A lead zirconate titanate (PZT) beam which has a very high power density is installed on the bluff body which will have WIV with the bluff body has been explored. Both numerical computation and experimental work have been taken to measure the capacity of the power generating system. Two different shapes of bluff bodies have been tested. In numerical section, the lift and drag coefficient and the vortex shedding frequency have been computed to verify how the dimensionless parameter Vr affects the fluid field. An one-degree-freedom system has been added to describe the wind-induced vibration, and the vibrational frequency and amplitude of the vibration have been monitored. The fluid-structure interaction has been solved by a hybrid method of finite volume method (FVM) and finite element method (FEM). From numerical simulation, the conclusions can be given that as the non-dimensionalised mass m* is about 780, the vortex induced vibration (VIV) response of a single cylinder is quite different comparing with Govardhan&Williamson. Then a wind tunnel test has been taken to measure the voltage output of the PZT, and we have gotten a result quite close to the data of numerical method.

This content is only available via PDF.
You do not currently have access to this content.