A small personal use wind turbine (PWT) is studied and tested for power, exergy and energy evaluation under different operating conditions. The wind turbine incorporates non-twisted blades of 1.5 m span and 0.27 m chord, using NACA 63418 airfoil. Using the earlier test results at pitch angles of 22°, 34° and 38° between the wind speeds of 4 m/s to 7 m/s, torque produced by each blade is determined. It is desired to calculate the torque as it is difficult to measure it for a small wind turbine. Using the governing equations and available computational fluid dynamics software, the total torque on each blade is determined. The resultant torque yielded the mechanical power output of the PWT. Using the available power, energy and exergy in the air flow, corresponding efficiencies are determined. To determine the changes in energy and exergy with respect to the wind speed, wind-chill factor expression is utilized. Results are collected for a wide range of wind speeds and pitch angles. Power, energy, exergy and their corresponding efficiency is evaluated to determine the optimal use pitch angle and ambient conditions. The pitch angles of 22° and 38o yielded high efficiencies although 22° produced the higher rotational speed as compared to 38°. The result suggests better performance for continuous wind speed conditions at low pitch angles — with respect to the rotating plane. For non-continuous wind conditions, higher pitch angles appeared beneficial.

This content is only available via PDF.
You do not currently have access to this content.