Fitness-for-service (FFS) assessments are quantitative engineering evaluations which are required to be preformed periodically in accordance with the published codes and standards to demonstrate the structural integrity of in-service components. This report summarizes the results of nondestructive in-service-inspection (ISI) of pressurized components conducted for condition assessment of the Dakhani Gas Processing Plant of Oil and Gas Development Corporation Ltd. (OGDCL) for the first time since its commissioning in December,1989. The non-destructive evaluation of the plant was required because of concerns for occurrence of sulphide-stress-cracking. Hydrogen embrittlement, hydrogen-including-cracking, weight-loss-corrosion, sulphur-stress-corrosion due to determental service conditions at Dakhani having low PH, High H2S, high chlorides and pressure of CO2.
The results have shown that microstructural changes associated with first and second stage of hydrogen attack have occurred in almost all of the pipe joints and pressure vessels. Hardness of some vessels has even exceeded the NACE limit of 220 HB. Effect of second stage of hydrogen attack are dominant in pipe joints, resulting in loss of hardness and strength because of decarburization. The results based on ultrasonic attenuation monitoring also indicate degradation of components. Random rounded indications have also been observed in some pipe joints during X-Ray radiographic testing that could serve as sites for failure initiation. The corrosion-under-insulation is observed for joints of piping spreading over a significant length. Localized corrosion and pitting is also observed in some locations of pressure vessels and piping. Ultrasonic thickness gauging has shown a significant variation in thickness for dish end and shell of some pressure vessels as well as for various joints of piping. In absence of periodic ISI data for the plant and keeping in view the results of non-destructive evaluation summarized above, the end-of-life (EOL) assessment of pressure vessels and piping is not possible and operation of the plant should be continued with a degree of caution. Any estimate of safe life assessment of the plant made at this stage would require revision on the basis of observed level of degradation through essential periodic in-service monitoring. In order to cope with the situation, it is recommended that monitoring of further degradation of microstructure and hardness along with flaw growth should be carried out after a period of 8x103 hours. Necessary remedial measures for rectification of flaws are requested. Non-destructive strain gauging is recommended to estimate data for safe life assessment of pressure vessels. Thermographic scanning of on-line in-service insulated pipelines is proposed for monitoring corrosion-under-insulation during plant operation.