The aim of this investigation is to determine the effects of confinement on the stabilization of turbulent, lifted methane (CH4) jet flames. A confinement cylinder (stainless steel) separates the coflow from the ambient air and restricts excess room air from being entrained into the combustion chamber, and thus produces varying stabilization patterns. The experiments were executed using fully confined, semi-confined, and unconfined conditions, as well as by varying fuel flow rate and coflow velocity (ambient air flowing in the same direction as the fuel jet). Methane flames experience liftoff and blowout at well-known conditions for unconfined jets, however, it was determined that with semi-confined conditions the flame does not experience blowout. Instead of the conventional unconfined stabilization patterns, an intense, intermittent behavior of the flame was observed. This sporadic behavior of the flame, while under semi-confinement, was determined to be a result from the restricted oxidizer access as well as the asymmetrical boundary layer that forms due to the viewing window. While under full confinement the flame behaved in a similar method as while under no confinement (full ambient air access). The stable nature of the flame while fully confined lacked the expected change in leading edge fluctuations that normally occur in turbulent jet flames. These behaviors address the combustion chemistry (lack of oxygen), turbulent mixing, and heat release that combine to produce the observed phenomena.

This content is only available via PDF.
You do not currently have access to this content.