The inference of strong background noise and reflected by the wall and tube rows surface makes it impossible that justify accurately leakage position employing the characteristic received by multi-channel sensors. It is the ‘bottleneck’ for promoting the accuracy of boiler tube leakage location. The 600MW supercritical boiler model was established, the leakage source propagation process of reflection and attenuation in boiler furnace was simulated by EASE. The approximate signal to noise ratio (SNR) was obtained and the reverberation time was calculated with the squared impulse response integration method on the foundation of simulation. The time delay estimation algorithm PTN, SWITCH derived from PHAT and ML, respectively, are proposed and experiments results revealed the superiority over the classical generalized cross correlation (GCC) method in reverberant and noisy boiler background. Although SWITCH is outperformed by PTN slightly, but the prior knowledge of reverberant energy to direct energy ratio may be hard to obtain in practice and frequencies onset detection is required in PTN method, so the implementation of SWITCH is much easier.

This content is only available via PDF.
You do not currently have access to this content.