Humid air gas turbine systems that are regenerative cycle using humidified air can achieve higher thermal efficiency than gas turbine combined cycle power plant (GTCC) even though they do not require a steam turbine, a high combustion temperature, or a high pressure ratio. In particular, the advanced humid air gas turbine (AHAT) system appears to be highly suitable for practical use because its composition is simpler than that of other systems. Moreover, the difference in thermal efficiency between AHAT and GTCC is greater for small and medium-size gas turbines. To verify the system concept and the cycle performance of the AHAT system, a 3MW-class pilot plant was constructed that consists of a gas turbine with a two-stage centrifugal compressor, a two-stage axial turbine, a reverse-flow-type single-can combustor, a recuperator, a humidification tower, a water recovery tower, and other components. As a result of an operation test, the planned power output of 3.6MW was achieved, so that it has been confirmed the feasibility of the AHAT as a power-generating system. In this study, running tests on the AHAT pilot plant is carried out over one year, and various characteristics such as the effect of changes in ambient temperature, part-load characteristics, and start-up characteristics were clarified by analyzing the data obtained from the running tests.

This content is only available via PDF.
You do not currently have access to this content.