Distributed Combustion offers significant potential for improved performance and near zero emissions for gas turbine and other industrial applications. Our quest for zero emission distributed combustion is further explored here by utilizing swirl to the flow. The beneficial aspects of distributed swirl combustion are examined with special focus on near zero emissions of NO and CO, and significantly improved pattern factor of the combustor using low calorific value fuel. Methane gas diluted with inert gas is used to simulate the low heating value fuel. A cylindrical geometry is used for combustor with air injected tangentially to impart swirl to the flow. The combustion behavior is evaluated using normal and preheated air at inlet to the combustor. Experimental results from the distributed combustor design using methane fuel showed low levels of NO (<8PPM) and low CO (∼21PPM) under non premixed conditions at an equivalence ratio of 0.7 and high heat release intensity of 36MW/m3-atm. With preheated air to the combustor, results showed overall NO levels of <15PPM and CO ∼12 PPM for non premixed combustion at an equivalence ratio of 0.6 under high heat release intensity of 27MW/m3-atm. Low heating value gas resulted in a dramatic decrease in NO emissions (30–50%) with minimal effect on CO for all the conditions examined here. Results obtained with different calorific value fuels on the emissions of NO and CO, lean stability limit and OH* chemiluminescence are presented.
Skip Nav Destination
Sign In or Register for Account
ASME 2011 Power Conference collocated with JSME ICOPE 2011
July 12–14, 2011
Denver, Colorado, USA
Conference Sponsors:
- Power Division
ISBN:
978-0-7918-4459-5
PROCEEDINGS PAPER
Distributed Combustion With Swirl for Gas Turbine Application Using Low Calorific Value Fuel
Ahmed E. E. Khalil
,
Ahmed E. E. Khalil
University of Maryland, College Park, MD
Search for other works by this author on:
Ashwani K. Gupta
Ashwani K. Gupta
University of Maryland, College Park, MD
Search for other works by this author on:
Ahmed E. E. Khalil
University of Maryland, College Park, MD
Ashwani K. Gupta
University of Maryland, College Park, MD
Paper No:
POWER2011-55109, pp. 23-32; 10 pages
Published Online:
February 28, 2012
Citation
Khalil, AEE, & Gupta, AK. "Distributed Combustion With Swirl for Gas Turbine Application Using Low Calorific Value Fuel." Proceedings of the ASME 2011 Power Conference collocated with JSME ICOPE 2011. ASME 2011 Power Conference, Volume 1. Denver, Colorado, USA. July 12–14, 2011. pp. 23-32. ASME. https://doi.org/10.1115/POWER2011-55109
Download citation file:
Sign In
5
Views
0
Citations
Related Proceedings Papers
Related Articles
Combustion Characteristics of a Can Combustor With a Rotating Casing for an Innovative Micro Gas Turbine
J. Eng. Gas Turbines Power (July,2009)
FLOX ® Combustion at High Power Density and High Flame Temperatures
J. Eng. Gas Turbines Power (December,2010)
FLOX ® Combustion at High Pressure With Different Fuel Compositions
J. Eng. Gas Turbines Power (January,2008)
Related Chapters
Introduction
Consensus on Operating Practices for Control of Water and Steam Chemistry in Combined Cycle and Cogeneration
Conclusions
Clean and Efficient Coal-Fired Power Plants: Development Toward Advanced Technologies
Physiology of Human Power Generation
Design of Human Powered Vehicles