The authors reveal the dominant chemical reactions and the optimum conditions, supposing the design of ethanol steam-reforming reactors. Specifically speaking, experiments are conducted for Cu/ZnO/Al2O3 catalyst, together with those for Ru/Al2O3 catalyst for reference. Using a household-use-scale reactor with well-controlled temperature distributions, the authors compare experimental results with chemical-equilibrium theories. It has revealed by Shinoki et al. (2011) that the Cu/ZnO/Al2O3 catalyst shows rather high performance with high hydrogen concentration CH2 at low values of reaction temperature TR. Because, the Cu/ZnO/Al2O3 catalyst promotes the ethanol-steam-reforming and water-gas-shift reactions, but does not promote the methanation reaction. So, in the present study, the authors reveal that the Ru/Al2O3 catalyst needs high TR > 770 K for better performance than the Cu/ZnO/Al2O3 catalyst, and that the Ru/Al2O3 catalyst shows lower performance at TR < 770 K. Then, the Ru/Al2O3 catalyst is considered to activate all the three reactions even at low TR. Furthermore, concerning the Cu/ZnO/Al2O3 catalyst, the authors reveal the influences of liquid-hourly space velocity LHSV upon concentrations such as CH2, CCO2, CCO and CCH4 and the influence of LHSV upon the ethanol conversion XC2H5OH, in a range of LHSV from 0.05 h−1 to 0.8 h−1, at S/C = 3.0 and TR = 520 K. And, the authors reveal the influences of the thermal profile upon CH2, CCO2, CCO, CCH4 and XC2H5OH, for several LHSV’s. To conclude, with well-controlled temperatures, the reformed gas can be close to the theory. In addition, the authors investigate the influences of S/C.

This content is only available via PDF.
You do not currently have access to this content.