Colorless Distributed Combustion (CDC) can provide significant improvement in gas turbine combustor performance. CDC is characterized by uniform thermal field in the entire combustion chamber, thus avoiding hot-spot regions for low NOx emissions (thermal NOx) and significantly improved pattern factor. In this paper, colorless distributed combustion with swirl is investigated in detail to seek the beneficial aspects of CDC and swirl flows with focus on developing ultra low emissions of NO and CO, and much improved pattern factor. Experimental investigations have been performed using a cylindrical combustor with different modes of fuel injection, swirling air injection and gas exit stream location of the combustor. Air was injected tangentially to impart swirl to the flow inside the combustor. Results showed very low levels of NO (∼3PPM) and CO (∼70PPM) emissions at equivalence ratio of 0.7 at a high heat release intensity of 36MW/m3atm with non-premixed mode of combustion. Results have also been obtained on lean stability limit and OH* chemiluminescence under both premixed and non-premixed conditions.

This content is only available via PDF.
You do not currently have access to this content.