Deterioration of components and structures at power generating facilities has caused unscheduled plant outages, personnel safety concerns, and significant impact on operating budgets. However, new technology is now available that can increase the usable life of components and structures, while significantly reducing the economic burden normally associated with repair or replacement options. This technology, known as “Fiber Reinforced Polymers” or FRP, primarily utilizes carbon fibers and high strength epoxy resins to restore or enhance the structural and or pressure boundary capacity of plant components. The extent of the FRP reinforcement is determined by the targeted equipment operating parameters, and the inter-action of the composite materials with the host component. These repairs are typically accomplished in-place with small crews and completed during a relatively short duration. The material technology and engineering associated with FRP repair methods provides an effective mechanism to rehabilitate piping, pumps, heat exchangers, water boxes, structural shapes and numerous other items while minimizing the cost typically associated with direct replacement. This paper will focus on typical applications, design and installation of FRP technology as it relates to maintenance activities at power generating facilities.

This content is only available via PDF.
You do not currently have access to this content.