Application of two mayor design tools, Finite Element Analysis (FEA) and Computational Fluid Dynamics (CFD), for the performance improvement of a 76 MW Francis turbine runner is presented. In order to improve the performance of the runner, not only a CFD based optimization for the runner but also its structural integrity evaluation was carried out. In this paper, a number of analyses included within the design tools-based runner optimization process are presented. Initially, a reference condition for the fluid behaviour through turbine components was carried out by means of the computation of fluid conditions through the spiral case and stays vanes, followed by CFD-based fluid behaviour for the wicket so as to include the flow effects induced by these components in the final CFD analysis for the runner. All CFD computations were generated within the three dimensional Navier-Stoke commercial turbomachinery oriented CFD code FINE™/Turbo from NUMECA. The whole hydraulic turbine performance was then compared against actual data from a medium-head Francis type hydro turbine (76 MW). Then, CFD-based flow induced stresses in the turbine runner were computed by using a three dimensional finite element model built within the FEA commercial code ANSYS. Appropriate boundary conditions were set in order to obtain the results due to the different type loads (pressure and centrifugal force). The FEM model was able to capture the pressure gradients on the blade surfaces obtained from the CFD results. Improvement of efficiency and power for the runner was computed by using a parametric model built within 3D CFD code integrated environment FINETM/Design3D from NUMECA which combines genetic algorithms and a trained artificial neural network. During the optimization process the artificial neural network is trained with a database of geometries and their respective CFD computations in order to determine the optimum geometry for a given objective function. The optimisation process and the trend curve of the optimization or design cycle that included 29 parameters (corresponding to the control points of runner blade primary sections) which could vary during the process is presented. Finally, the flow induced stresses of the optimized Francis turbine runner was computed so as to evaluate the final blade geometry modifications related to the efficiency and power improvement.
Skip Nav Destination
ASME 2009 Power Conference
July 21–23, 2009
Albuquerque, New Mexico, USA
Conference Sponsors:
- Power Division
ISBN:
978-0-7918-4350-5
PROCEEDINGS PAPER
Design Tools for the Performance Improvement of a 76 MW Francis Turbine Runner
Jose´ Manuel Franco-Nava,
Jose´ Manuel Franco-Nava
Instituto de Investigaciones Ele´ctricas, Cuernavaca, MOR, Me´xico
Search for other works by this author on:
Oscar Dorantes-Go´mez,
Oscar Dorantes-Go´mez
Instituto de Investigaciones Ele´ctricas, Cuernavaca, MOR, Me´xico
Search for other works by this author on:
Erik Rosado-Tamariz,
Erik Rosado-Tamariz
Instituto de Investigaciones Ele´ctricas, Cuernavaca, MOR, Me´xico
Search for other works by this author on:
Jose´ Manuel Ferna´ndez-Da´vila,
Jose´ Manuel Ferna´ndez-Da´vila
Comisio´n Federal de Electricidad, Mexico City, Me´xico
Search for other works by this author on:
Reynaldo Rangel-Espinosa
Reynaldo Rangel-Espinosa
Comisio´n Federal de Electricidad, Mexico City, Me´xico
Search for other works by this author on:
Jose´ Manuel Franco-Nava
Instituto de Investigaciones Ele´ctricas, Cuernavaca, MOR, Me´xico
Oscar Dorantes-Go´mez
Instituto de Investigaciones Ele´ctricas, Cuernavaca, MOR, Me´xico
Erik Rosado-Tamariz
Instituto de Investigaciones Ele´ctricas, Cuernavaca, MOR, Me´xico
Jose´ Manuel Ferna´ndez-Da´vila
Comisio´n Federal de Electricidad, Mexico City, Me´xico
Reynaldo Rangel-Espinosa
Comisio´n Federal de Electricidad, Mexico City, Me´xico
Paper No:
POWER2009-81201, pp. 293-300; 8 pages
Published Online:
September 22, 2010
Citation
Franco-Nava, JM, Dorantes-Go´mez, O, Rosado-Tamariz, E, Ferna´ndez-Da´vila, JM, & Rangel-Espinosa, R. "Design Tools for the Performance Improvement of a 76 MW Francis Turbine Runner." Proceedings of the ASME 2009 Power Conference. ASME 2009 Power Conference. Albuquerque, New Mexico, USA. July 21–23, 2009. pp. 293-300. ASME. https://doi.org/10.1115/POWER2009-81201
Download citation file:
13
Views
Related Proceedings Papers
Related Articles
Numerical Techniques Applied to Hydraulic Turbines: A Perspective Review
Appl. Mech. Rev (January,2016)
A Genetic Algorithm Based Multi-Objective Optimization of Squealer Tip Geometry in Axial Flow Turbines: A Constant Tip Gap Approach
J. Fluids Eng (February,2020)
A Systematic Validation of a Francis Turbine Under Design and Off-Design Loads
J. Verif. Valid. Uncert (March,2019)
Related Chapters
Outlook
Closed-Cycle Gas Turbines: Operating Experience and Future Potential
Control and Operational Performance
Closed-Cycle Gas Turbines: Operating Experience and Future Potential
List of Commercial Codes
Introduction to Finite Element, Boundary Element, and Meshless Methods: With Applications to Heat Transfer and Fluid Flow