The generation of electrical power is a complex matter that is dependent in part both on the anticipated demand and the actual amount of power required on the grid. Therefore, the amount of power being generated varies widely depending on the time of day, day of the week, and atmospheric conditions such as cold spells and heat waves. While the amount of power varies, it is recognized that maximum efficiencies are achieved by operating power generation systems at or near steady state conditions. With this in mind, there has been an increased use of gas turbine systems that may be quickly added online to the grid to provide additional power because gas turbine systems are typically well suited for being brought online quickly to provide spinning reserve or electrical generation. However, gas turbines are recognized as not being as efficient as other plant systems such as large steam plants because the gas turbine is an open cycle system where approximately 60 to 70 percent of the energy is lost as exhaust waste heat energy. One recognized method of increasing gas turbine efficiencies is to add a steam bottoming cycle to the exhaust system. However, these closed cycle systems are costly and they compromise the gas turbine’s quick starting capability. This paper discusses an open bottoming cycle that is simple, cost effective and well suited for peaking power generation service. It not only substantially improves the gas turbine simple cycle plant heat rate, but also provides the opportunity to greatly reduce the NOX emissions levels with the application of a low temperature SCR.

This content is only available via PDF.
You do not currently have access to this content.