The purpose of this study is to establish a fuel process for an advanced power generation system where hydrogen-rich synthesis gas, meeting the tolerance level of fuels for the molten carbonate fuel cell (MCFC), can be efficiently extracted from biomass via gasification and reforming technologies. Experiments on architectural salvages gasification were performed using a bench-scale gasification system. The main factors influencing hydrogen generation in the non-catalytic process and catalytic process were investigated, and temperature was identified as the most important factor. At 950°C, without employing catalyst, about 54% (V/V) content of hydrogen-rich synthesis gas was extracted from feedstock with appropriately designed operation parameters for the steam/carbon ratio (S/C) and the equivalence ratio (ER). However, by employing a commercial steam reforming catalyst into the reforming process, the similar results were generated at 750°C.

This content is only available via PDF.
You do not currently have access to this content.