An experimental study to compare the smoking characteristics of diffusion flames of propylene diluted nitrogen, argon, carbon dioxide and helium was performed. The mass flow rate of propylene at smoke point condition, which was defined as the critical fuel mass flow rate (CFMFR), was first determined. Then, CFMFR was divided into ten different fractions for the study of the mechanism of inert gas dilution on smoke point. The mass flow rate of each different inert gas to achieve the smoke point condition was then determined in the same manner. Flame radiation and the visible flame height for all the diluted fuel flames were measured. The axial soot concentration profiles of nitrogen-diluted smoke point flames were also measured using the laser induced incandescence (LII) method for selective conditions. The inert gas dilution study showed two distinct regions (chemical and momentum controlled regions). The study shows the amount diluent needed to achieve smoke point was in the decreasing order of Ar, CO2, N2 and He on mass basis. The analysis of the results showed that the main reason for this phenomenon was the heat sink capability of the gas. Hence, the specific heat of the gas was an important parameter. In general, nitrogen-diluted flames had higher flame length than other inert gas diluted flames. At higher CFMFR, in helium-diluted flames radiation was higher than in other flames.
Skip Nav Destination
ASME 2004 Power Conference
March 30–April 1, 2004
Baltimore, Maryland, USA
Conference Sponsors:
- Power Division
ISBN:
0-7918-4162-6
PROCEEDINGS PAPER
Mechanism of the Effect of Dilution With Different Inert Gases on Smoke Point of Propylene Diffusion Flames
S. R. Gollahalli
S. R. Gollahalli
University of Oklahoma, Norman, OK
Search for other works by this author on:
S. F. Goh
University of Oklahoma, Norman, OK
S. R. Gollahalli
University of Oklahoma, Norman, OK
Paper No:
POWER2004-52134, pp. 561-567; 7 pages
Published Online:
November 17, 2008
Citation
Goh, SF, & Gollahalli, SR. "Mechanism of the Effect of Dilution With Different Inert Gases on Smoke Point of Propylene Diffusion Flames." Proceedings of the ASME 2004 Power Conference. ASME 2004 Power Conference. Baltimore, Maryland, USA. March 30–April 1, 2004. pp. 561-567. ASME. https://doi.org/10.1115/POWER2004-52134
Download citation file:
7
Views
Related Proceedings Papers
Related Articles
The Experimental Behavior of Premixed Flames in Tubes: The Effects of Diluent Gases
J. Eng. Power (April,1980)
Flame Structure and Pollutant Emission Characteristics of a Burning Kerosene Spray With Injection of Diluents
J. Energy Resour. Technol (September,1992)
Simulation of Laser-Induced Incandescence Measurements in an Anisotropically Scattering Aerosol Through Backward Monte Carlo
J. Heat Transfer (November,2008)
Related Chapters
Studies Performed
Closed-Cycle Gas Turbines: Operating Experience and Future Potential
The Special Characteristics of Closed-Cycle Gas Turbines
Closed-Cycle Gas Turbines: Operating Experience and Future Potential
Thermodynamic Performance
Closed-Cycle Gas Turbines: Operating Experience and Future Potential