The importance of studying laminar premixed flames lies in applications such as gas ranges and ovens, heating appliances and Bunsen burners. With the current demand for large amounts of economical, clean power, there is a need for research in increasing the combustion efficiency. Laminar premixed Propane/Hydrogen/Air flames with 3 m/s coflow and without coflow, with a variation of jet equivalence ratio (JEQ) from 0.5 to 4 for 20 m/s jet velocity, have been studied experimentally to determine the interactions of burner geometry of premixed flames and coflow. Two different burner geometries (circular burner, and 3:1 aspect ratio (AR) burners) were used in the experiments. The stability tests indicated that for 20 m/s jet velocity both at quiescent and coflow conditions the circular burner was more stable than the 3:1AR elliptical burner. Flame height studies indicated that circular burner flames were taller than the 3:1AR elliptical burner flames. However, there was a reduction in flame height when coflow air velocity of 3 m/s was introduced. Temperature profile indicated a higher peak temperature for circular burners followed by elliptical burner, both at quiescent and coflow conditions. The introduction of moderate coflow showed a decrease in NO production rate. In order to explain the structure of the flame in detail and various mechanisms that lead to the explanation of global flame characteristics, inflame concentration measurements were taken in near burner (25% of flame height), mid burner (50% of flame height) and far burner (75% of flame height) regions of the flame.

This content is only available via PDF.
You do not currently have access to this content.