Since the inception of the cyclone style boiler, industry has become accustomed to performing routine maintenance during every scheduled shutdown occurring 12 months to 18 months between cycles. These maintenance cycles are influenced by service factor, loading and the type design. The same problems exist in both the standard and super critical cyclones; severe deterioration of refractory and the anchoring pin studs. This paper focuses on one type of refractory failure mechanism caused by the anchoring pin studs. Most operators have found that the most effective means of applying refractory in this type situation is to “ram” the refractory in and around the anchoring pin studs thus creating a dense lining with maximum integrity. Coupled with proper application of anchoring pin studs and a special designed coating, typical volumetric expansion of the pin studs from corrosion attack and oxidation is eliminated thus extending the life of the refractory. This mechanism is discussed along with the results of the coating performance as it relates to extreme heat oxidation and thermal cycling in laboratory tests. A protective coating was developed using a nano-cored thermal spray wire technology that produces a uniform, adherent protective layer against high temperature corrosion and oxidation. The coating yields similar thermal conductivity as a bare stud thus experiencing excellent thermal cycle performance. This specially designed thermal spray coating is applied to standard 430 stainless steel pin studs thus providing the necessary barrier against aggressive high temperature environments while maintaining excellent heat conductivity. The coating has a high amount of tungsten (40+%) in a nickel matrix with greatly reduced oxides at the substrate and throughout the coating. With these attributes for the anchoring pin studs in mind, a newly designed stud was evaluated in heat oxidation tests up to 2000°F and thermal cycling test and compared to 430 stainless steel, chromized and Alloy 625. The new stud out-performed all others even in the as-welded condition. Further corrosion testing in ferric chloride (ASTM G48) showed them to be superior to Alloy 72 and Alloy 625 in the thermal spray and welded condition. Proper welding equipment and welding techniques are also discussed since weld continuity impacts overall performance of anchoring pin studs with refractory linings. A major test site will be examined in the spring of 2004 for it’s full effectiveness in service and will be documented in order that all data retrieved would be available to the entire industry.
Skip Nav Destination
ASME 2004 Power Conference
March 30–April 1, 2004
Baltimore, Maryland, USA
Conference Sponsors:
- Power Division
ISBN:
0-7918-4162-6
PROCEEDINGS PAPER
Cyclone Maintenance Improvement via Special Refractory Anchor Pin Studs
Stephen R. Swartz, Jr.
Stephen R. Swartz, Jr.
New Age Fastening Systems
Search for other works by this author on:
Stephen R. Swartz, Jr.
New Age Fastening Systems
Paper No:
POWER2004-52183, pp. 223-226; 4 pages
Published Online:
November 17, 2008
Citation
Swartz, SR, Jr. "Cyclone Maintenance Improvement via Special Refractory Anchor Pin Studs." Proceedings of the ASME 2004 Power Conference. ASME 2004 Power Conference. Baltimore, Maryland, USA. March 30–April 1, 2004. pp. 223-226. ASME. https://doi.org/10.1115/POWER2004-52183
Download citation file:
5
Views
Related Proceedings Papers
Related Articles
Aero Engine Test Experience With CMSX-4® Alloy Single-Crystal Turbine Blades
J. Eng. Gas Turbines Power (April,1996)
Protective Coatings of Metallic Interconnects for IT-SOFC Application
J. Fuel Cell Sci. Technol (February,2008)
Intermediate Temperature, Low-Cycle Fatigue Behavior of Coated and Uncoated Nickel Base Superalloys in Air and Corrosive Sulfate Environments
J. Eng. Mater. Technol (January,1984)
Related Chapters
Part 2, Section II—Materials and Specifications
Companion Guide to the ASME Boiler & Pressure Vessel Code, Volume 1, Second Edition
Part 2, Section II—Materials and Specifications
Companion Guide to the ASME Boiler and Pressure Vessel Code, Volume 1, Third Edition
Surface Analysis and Tools
Tribology of Mechanical Systems: A Guide to Present and Future Technologies