Abstract
The directional wave spectrum, which describes the distribution of wave energy along frequencies and directions, can be estimated from the measured motions of a vessel subjected to a particular sea condition by resorting to the wave-buoy analogy. Several methods have been proposed to address the inverse estimation problem; recently, machine learning techniques have been assessed as further alternatives. However, it may be difficult to gather large datasets of in-service motion responses and the associated sea states to train effective data-driven models.
In this work, an encoder-decoder neural network is trained with the synthetic responses of a station-keeping platform supply vessel (PSV) to estimate the directional wave spectrum. This estimation model is directly applied to perform wave inference from motion data of wave basin tests with a small-scale model of the same vessel. Furthermore, fine-tuning is also used to incorporate experimental data into the neural network model.
Results show a satisfactory match between estimated and measured values, both with respect to the energy distribution and the integral spectrum parameters, indicating that the proposed approach can be employed to obtain data-driven wave inference models when there is little or no availability of measured motion records and the corresponding sea conditions.