Abstract

With the increasing size and flexibility of wind turbine blades, the impacts of blade deformation on the aerodynamic performance of wind turbines are becoming more and more important. To better understand the influence of blade flexibility on the wake interaction of FOWTs, a coupled analysis tool composed of an improved ALM and in-house CFD code based on OpenFOAM is employed to perform numerical simulations for two spar-type FOWTs with a tandem layout under given regular wave and uniform wind conditions. Coupled aero-hydro-elastic responses of the floating wind turbine are compared for rigid blades and flexible blades scenarios to examine the impacts of blade deformation on the wake interaction. The variations of aerodynamic loads, wake characteristics, and floating platform dynamics motions’ responses are fully examined. Our results show that the blade deformation of downstream FOWT is smaller than that of upstream FOWT due to the turbine wake. The time-mean aerodynamic load coefficients of both upstream and downstream FOWT decrease due to the shape deformation of the blade. Moreover, the wake vortexes are found to be more stable when the blade is flexible.

This content is only available via PDF.
You do not currently have access to this content.