Abstract
The fuel type selection according to optimal pathway from extraction of a raw material (feedstock) to its processing to transportation and finally its use in marine engines (well to wheel) based on the cost and emission criteria is the main motivation factor to conduct the current investigation. The undertaken procedure has been customized based on the available data (ship/bunker route and mileage, the ship powertrain system, etc.) of the shipping industry under the SeaTech H2020 project (seatech2020.eu). The selected modeling platform is utilized for the life cycle assessment of three potential fuels of diesel, methanol, and liquefied natural gas (LNG). Different fuel production pathways and powertrain dual-fuel technologies have been taken into account as the main variables, while the subsidiary factors such as transportation parameters (fuel economy and Avg. speed) are included in the calculations. The economic aspect and emission reduction trade-off for various scenarios are conducted to introduce the optimal solution based on the stakeholder interest in the shipping industry. The study also considers the fuel transport to the respective ports for a selected vessel from diverse fuel export locations and travelled routes according to datasets available for the same project. The results provide a guideline to the shipping industry on selecting possible conventional/renewable fuel resources to use in marine engines with emission content during each adopted pathway, where the respective subsequent expenditure per 1 MJ of each fuel sample as the functional unit has been evaluated.