Abstract

This paper presents an experimental study of a new floating platform, being supported by air-cushion modules. The platform consists of six hexahedron air cushion units in which their bottom is open to the water surface. A moonpool is placed in the middle of the platform. A 1:47 scale model was used for the measurement of heave, pitch and surge motions in regular wave conditions. To evaluate the effect of a hexahedron air cushion unit, that of barge-type model was tested. The results show that the motion behaviors of the hexagonal air-cushion-type platform are better than those of the barge-type platform in short wave conditions, while behaviors in long wavelength are almost the same.

To evaluate the stability of the hexagonal air-cushion-type platform in windy conditions, a wind turbine of a circular disc-shape was installed on the platform. The thrust acting on the wind turbine and the wind velocity were measured simultaneously. Further, the inclination test of a three-blade wind turbine model was carried out. The results show that the tested hexagonal air-cushion-type platform is sufficiently stable for the practical use of wind turbines of a 20MW capacity. Similarly, platforms of larger size could be used for wind turbines larger than 20MW.

This content is only available via PDF.
You do not currently have access to this content.