Abstract

Artificial reefs (ARs) are one of the key man-made constructs to restore the offshore fishery resources and recover the ecological environment. However, it is found that many ARs lost their stability and function due to scour. In order to ensure the functional effect of ARs, it is of great significance to study the instability of ARs, like burying caused by scour in different flow conditions. The three-dimensional numerical model established by FLOW-3D is used to study the local scour characteristics around the AR in steady currents. The RANS equations, closed with the RNG k-ε turbulence model, are established for simulating a stable flow field around one AR. The simulation results are compared with previous experimental results and shows good agreement. Then, the effect of the opening number and the incident angles of ARs on the scour characteristics, the equilibrium scour depth and maximum scour volume are investigated. The results indicate that the scour depth and scour volume decrease with the increasing opening number. Moreover, the empirical equations of the effect of the opening number of the AR on the equilibrium scour depth and maximum scour volume are proposed based on the numerical results. The change of the incident angles will affect the change of bed shear stress at the most upstream corner of the AR. The greater bed shear stress results in a more intense scour. This study will provide theoretical support, and practical guidance for the optimized engineering design and construction of ARs.

This content is only available via PDF.
You do not currently have access to this content.