Abstract

Ocean renewable energy has a central role to play in decarbonizing the global energy system. The emergence of new technologies such as floating wind farms will significantly increase offshore wind deployment by providing access to large areas of the seabed that are not suitable for fixed bottom turbines. Operations and Maintenance (O&M) is estimated to contribute 50% to an offshore wind farm’s total operational cost. The ability to improve the efficiency of O&M activities will enable offshore wind to compete with traditional fossil-based and onshore-renewable generation methods. To achieve this, an accurate characterization of the metocean environment is a mechanism of reducing delays and costs across the entire project lifecycle. One of the most significant costs associated with offshore operations is accessing a site with vessels. Site access is determined using vessels constraints in the maximum allowable meteorological and ocean (metocean) conditions and is defined as weather window analysis. However, industry guidelines and standards rely on historical data and do not consider the impact of climate change on the marine climate and the associated vessel operability. This requires the use of climate projection data. The opportunity to use an existing industry metric such as weather windows will tailor the climate projection data to the end-users needs. This paper’s findings suggest that climate change will alter the metocean environment and vessel operability for the case study location investigated. The findings demonstrate the value of site-specific assessment of the future wave climate to inform operational decision making. The main conclusion is that longer-term planning will require the offshore wind sector to consider the impact of climate change on O&M activities.

This content is only available via PDF.
You do not currently have access to this content.