A novel Variable-Shape Buoy Wave Energy Converter (VSB WEC) that aims at eliminating the requirement of reactive power is analyzed in this paper. Unlike conventional Fixed Shape Buoy Wave Energy Converters (FSB WECs), the VSB WEC allows continuous shape-changing (flexible) responses to ocean waves. The non-linear interaction between the device and waves is demonstrated to result in more power when using simple, low-cost damping control system. High fidelity numerical simulations are conducted to compare the performance of a VSB WEC to a conventional FSB WEC, of the same volume and mass, in terms of power conversion, maximum displacements, and velocities. A Computational Fluid Dynamics (CFD) based Numerical Wave Tank (CNWT), developed using ANSYS 2-way fluid-structure interaction (FSI) is used for simulations. The results show that the average power conversion is significantly increased when using the VSB WEC.

This content is only available via PDF.
You do not currently have access to this content.