Abstract
During ice-structure interactions that are dominated by ice compressive failure, the majority of the ice loads are transmitted through localized contact regions known as high-pressure zones (hpzs). This paper presents a probabilistic modelling framework for dynamic ice-structure interaction based on the mechanics of hpzs. Individual hpzs are modelled as a nonlinear spring-damper system where the stiffness is modelled as a function of nominal strain, with the degree of softening depending on the average strain-rate. Both spalling and crushing failure mechanisms were assessed in the context of periodical sinusoidal response. For spall dominated failure, the model structure showed presence of frequency lock-in in the speed range of 100–125mm/s, beyond which the failure was found to be random in nature with lower amplitude of structural response. The amplitude was also found to be significantly influenced by structural parameters with structural damping having the highest contribution. For pure crushing, an estimated equilibrium layer thickness based on theoretical calculations also showed presence of frequency lock-in. The work highlights the importance of understanding the interplay between these mechanisms, as well as the role of ice conditions and structural parameters on the processes that dominate an interaction.