Abstract

Ice floes in the marginal ice zone (MIZ) are exposed to wind, wave, and current forces which greatly influence the dynamics of the ice floes. ISO 19906 recommends considering combined wave and ice actions while designing offshore structures for arctic and cold regions. Few studies have focused on ice-structure interactions in waves. There are not many tools available to estimate these combined loads on structures. A numerical tool “SAMICE” has been developed to simulate the hydrodynamics of wave-ice interactions, but there exists a lack of data for a realistic MIZ under wave actions for validation studies of the numerical code.

To address this gap and to investigate the hydrodynamics of ice floes under waves, a set of experiments was conducted at the wave tank of Ocean Engineering Research Center (OERC) of Memorial University of Newfoundland. A six-component dynamometer was used to measure the loads on a model scale aluminum cylindrical gravity-based offshore structure. Loads were measured for five regular waves of various steepness in combination with three current speeds. Two ice concentrations with various floe sizes of random shapes were prepared from polypropylene sheets to represent the MIZ. Most of the tests were repeated three times and a statistical approach was used to analyze the loads. The preliminary analysis shows that the average wave-ice loads may be determined by ISO guidelines, but the predictions of impulse loads from individual wave-driven ice floes are very uncertain.

This content is only available via PDF.
You do not currently have access to this content.