Abstract

An application of cyber-physical testing to the empirical estimation of difference-frequency quadratic transfer functions is presented. As an alternative to today’s procedure based on hydrodynamic tests with broad-banded or realistic (e.g., JONSWAP) wave spectra, tests in bichromatic waves are considered. The laboratory setup is the one developed by Sauder & Tahchiev (2020) that enables magnifying the sensitivity of the floater response to the low-frequency wave loading by adjusting the stiffness and damping parameters of a virtual soft mooring system. Bayesian experimental design is proposed to optimize the selection of the control variables (frequencies in the bichromatic wave and properties of the virtual mooring system) for a batch of cyber-physical tests. The experimental design algorithm is based on the recent work of Huan & Marzouk (2013). In a virtual yet realistic case study using an uncertain parametric quadratic transfer function, we demonstrate how the uncertainty of its describing parameters and other calibration parameters (low-frequency added mass and hydrodynamic damping) can be reduced. Results indicate that the proposed procedure has the potential for reducing experimental cost for calibration of hydrodynamic models.

This content is only available via PDF.
You do not currently have access to this content.