Artificial intelligence (AI) brings a new solution to overcome the challenges of Floating offshore wind turbines (FOWTs) to better predict the dynamic responses with intelligent strategies. A new AI-based software-in-the-loop method, named SADA is introduced in this paper for the prediction of dynamic responses of FOWTs, which is proposed based on an in-house programme DARwind. DARwind is a coupled aero-hydro-servo-elastic in-house program for FOWTs, and a reinforcement learning method with exhaust algorithm and deep deterministic policy gradient (DDPG) are embedded in DARwind as an AI module. Firstly, the methodology is introduced with the selection of Key Disciplinary Parameters (KDPs). Secondly, Brute-force Method and DDPG algorithms are adopted to changes the KDPs’ values according to the feedback of 6DOF motions of Hywind Spar-type platform through comparing the DARwind simulation results and those of basin experimental data. Therefore, many other dynamic responses that cannot be measured in basin experiment can be predicted in good accuracy with SADA method. Finally, the case study of SADA method was conducted and the results demonstrated that the mean values of the platform’s motions can be predicted with higher accuracy. This proposed SADA method takes advantage of numerical-experimental method, basin experimental data and the machine learning technology, which brings a new and promising solution for overcoming the handicap impeding direct use of conventional basin experimental way to analyze FOWT’s dynamic responses during the design phase.

This content is only available via PDF.
You do not currently have access to this content.