Abstract

Wind load is one of the major design load considerations for the hull and mooring of offshore floating facilities. The first step to minimize the uncertainties in wind load is generating an accurate wind profile that satisfies design requirements.

Recently, there was a joint-industry effort to develop CFD modeling practices on wind-load estimation in SNAME OC-8 CFD Task Force (OMAE2018-78699). The Task Force developed the modeling practice for the NPD (Norwegian Petroleum Directorate) model commonly used for offshore platform design, and several independent participants in the Task Force successfully validated the practice for a topsides of a semi-submersible platform. The sustainable wind profile was able to be generated within 1% tolerance of the target wind profile, and the calculated wind loads on the topsides from CFD simulations were close to the model test data with low uncertainty levels.

In the present study, the numerical modeling for the sustainable ABL is extended to other popular wind models such as the ESDU (Engineering Science Data Unit) and the power-law models. The study is a part of a joint-development project between TechnipFMC, Chevron, and Samsung Heavy Industries. The analytic or numerical formulae of wind speed and turbulent quantities for several RANS (Reynolds-Averaged Navier-Stokes) models are derived for the wind models, and the sustainability of wind profiles are verified.

This content is only available via PDF.
You do not currently have access to this content.