Abstract

Egypt is both one of the major oil-producing non-OPEC countries and one of the oldest energy producers in the Middle East. Recently, the Egyptian government have signed several agreements for the exploration of oil and gas in several provinces/regions including; the Mediterranean, the Western Desert, the Nile Delta, and the Gulf of Suez. Petroleum companies have given great attention to Egypt’s new discoveries such as Zohr Gas Field and Nour exploration prospect. Successful drilling operations to reach the oil and gas targets depends strongly on the effectiveness of the drilling fluid (mud). It can be considered as the heart of the drilling process, where they are used to fulfil several valuable functions.

Drilling fluid technology is one of the most targeted and developed technologies worldwide. Several studies have examined the use of various types of nanoparticles (NPs) to enhance the properties and improve the performance of muds. NP can be defined as a simple particle structure with a size in the range of nanometers. The effectiveness of NPs can be accredited to their small size and high surface-area-to-volume ratio. Using NPs showed promising enhancements on the rheological and filtration characteristics as well as thermal stability and carrying capacity of the drilling fluid. Moreover, adding NPs to the drilling mud was found to minimize the shale permeability and thus, promote wellbore stability. The swelling and collapse of shale formations is expected under drilling with water-based mud, which might complicate the drilling operation.

In the present work four types of NPs (nanosilica, nanoaluminium, nanotitanium, and nano copper oxide) were tested as promising additives to improve the characteristics of KCL-Polymer mud, which is mainly used to drill shaly formations. The impact of NPs-type, -size, and -concentration were thoroughly investigated using standard viscometer and API filter press. The results showed higher potential of nanotitanium and nanoaluminium to enhance the mud properties when used at small concentrations (0.3–0.5 wt.%).

This research paper discusses a latest application and presents the most valuable findings concerning the efficient use of NPs in the drilling fluid industry. On this basis, different recommendations are stated, which might help researchers to better understand NPs’ functionality in this area of application and promote using NPs-based drilling muds as cost-effective and environmental-friendly fluids to drill the Egyptian oil and gas wells.

This content is only available via PDF.
You do not currently have access to this content.