Abstract

The multistage hydraulic fracturing is the best practice to stimulate unconventional hydrocarbon reservoirs for optimal production. Recent studies suggested that selective stimulation design could significantly increase production rates at a reduced cost rather than using non-selective geometric stages. An optimal design needs detailed logging and core information to selectively perforate and optimize the stimulation treatment. In most cases, the non-selective evenly spaced geometric stimulation design is used, primarily due to the time consuming and expensive conventional logging tools and techniques.

In this article, a 3D wellbore friction model is used to estimate the effective downhole weight on bit (DWOB) from the drilling data, directional survey data and drill string information. The estimated DWOB is used as an input to the inverted rate of penetration (ROP) model along with other drilling data, drill bit specifications and reservoir specific formation constants, to calculate rock mechanical and reservoir properties including, compressive strength, Young’s modulus, porosity, permeability and Poisson’s ratio without the use of expensive downhole logging tools. The rock brittleness index is calculated from the relationship between Young’s modulus and Poisson’s ratio based on the definitions of rock brittleness used in recent years.

The field data from horizontal drilling of three sample wells were used to investigate the geomechanical properties in the Montney shale formation and the lower Eagle Ford formation in North America. The calculated geomechanical properties were compared to the corresponding test analysis on cores. The authors investigated the rock brittleness index from the sample well data drilled horizontally in the lower Eagle Ford formation. This novel technology could help geologists and reservoir engineers better exploit unconventional reservoirs leading to optimal selective stimulations and greater net present value (NPV).

This content is only available via PDF.
You do not currently have access to this content.