Abstract

The presence of sea ice has a major impact on the safety, operability and efficiency of Arctic operations and navigation. While satellite-based sea ice charting is routinely used for tactical ice management, the marine sector does not yet make use of existing operational sea ice thickness forecasting. However, data products are now freely available from the Copernicus Marine Environment Monitoring Service (CMEMS). Arctic asset managers and vessels’ crews are generally not aware of such products, or these have so far suffered from insufficient accuracy, verification, resolution and adequate format, in order to be well integrated within their existing decision-making processes and systems.

The objective of the EU H2020 project “Safe maritime operations under extreme conditions: The Arctic case” (SEDNA) is to improve the safety and efficiency of Arctic navigation. This paper presents a component focusing on the validation of an adaption of the 7-day sea ice thickness forecast from the UK Met Office Forecast Ocean Assimilation Model (FOAM). The experimental forecast model assimilates the CryoSat-2 satellite’s ice freeboard daily data.

Forecast skill is evaluated against unique in-situ data from five moorings deployed between 2015 and 2018 by the Barents Sea Metocean and Ice Network (BASMIN) Joint Industry Project. The study shows that the existing FOAM forecasts produce adequate results in the Barents Sea. However, while studies have shown the assimilation of CryoSat-2 data is effective for thick sea ice conditions, this did not improve forecasts for the thinner sea ice conditions of the Barents Sea.

This content is only available via PDF.
You do not currently have access to this content.