Abstract
As the consumption of fossil fuel resources has continuously increased to meet global fuel demands for power generation, atmospheric emissions of greenhouse gases, particularly carbon dioxide (CO2), have rapidly increased over the last century. Increased CO2 emissions have caused serious international concerns about global warming, sea-level rise, and ocean acidification. Although post-combustion carbon capture technology that separates CO2 from flue gas in fossil fuel-fired power plants has contributed to significant migration of atmospheric CO2 emissions, this approach generates considerable amounts of toxic wastewater containing a heavy chemical which is difficult to treat, raises concerns about acute corrosion of metal structures in the facility, and waste of significant amounts of freshwater. In this research, we are particularly interested in reducing the use of freshwater for CO2 capture and generating carbonate minerals, byproducts of CO2 with calcium (Ca2+) or magnesium ions (Mg2+) in ocean water which are useful building blocks for marine animals, such as seashells and coral reefs. In our experimental approach, we attempted to use ocean water with different monoethanolamine (MEA) concentrations and compared the CO2 capturing efficiency with that in DI water. We found that there are considerable benefits of the use of ocean water in CO2 dissolution, showing that a replacement of freshwater with ocean water would be a possible option. In the future, we will further enhance the dissolution of CO2 in ocean water by using nanoparticle catalysts without using MEA, which will be an environmentally friendly method for CO2 capture.