Abstract
This paper consists of two parts. Part one presents a thin-shell analytical solution for calculating the conical transition junction loads. Design equations as contained in the current offshore standards are based on Boardman’s 1940s papers with beam-column type of solutions. Recently, Lotsberg presented a solution based on shell theory, in which both the tubular and the cone were treated with cylindrical shell equations. The new solution as presented in this paper is based on both cylindrical and conical shell theories. Accuracies of these various derivations will be compared and checked against FEM simulations.
Part 2 of this paper is concerned with the ultimate capacity equations of conical transitions. This is motivated by the authors’ desire to unify the apparent differences among the API 2A, ISO 19902 and NORSOK design standards. It will be shown that the NORSOK provisions are equivalent to the Tresca yield criterion as derived from shell plasticity theory. API 2A provisions are demonstrated to piecewise-linearly approximate this Tresca yield surface with reasonable consistency. The 2007 edition of ISO 19902 will be shown to be too conservative when compared to these other two design standards.