Abstract

In recent times, drag-based vertical-axis wind turbine rotors have gained increasing interests in offshore applications because of their performance potential and reliability. Their advantages like simplicity, easier manufacture and lower maintenance cost have attracted the researcher’s attention toward improving their design further. However, this type of rotor is still suffering from lower efficiency than the lift-based Darrius and the horizontal-axis wind turbine rotors. A recently developed elliptical-bladed Savonius rotor has shown its potential to harvest wind energy more efficiently. However, the geometric parameters of this rotor such as aspect ratio, overlap ratio, number of blades, shaft and end plates, the aerodynamic parameters such as Reynolds number, lift and drag coefficients are needed to be optimized for further improvement of its performance. In the present investigation, the wind tunnel tests have been conducted to analyze the effect of shaft and end-plates of a newly developed elliptical-bladed vertical-axis Savonius wind turbine rotor. Experiments have been conducted over a range of tip speed ratios to find the torque and power coefficients of a two-bladed rotor system for two individual cases viz., the rotor with a shaft and the rotor with end-plates. In order to have a direct comparison, the experimental data are also obtained for the same rotor without the shaft and without the end-plates. The wind tunnel tests have demonstrated an improvement of power coefficient by 26.31% for the rotor with the end plates.

This content is only available via PDF.
You do not currently have access to this content.